2,069 research outputs found

    Genomic Diversity among Beijing and non-Beijing Mycobacterium tuberculosis Isolates from Myanmar

    Get PDF
    Background: The Beijing family of Mycobacterium tuberculosis is dominant in countries in East Asia. Genomic polymorphisms are a source of diversity within the M. tuberculosis genome and may account for the variation of virulence among M. tuberculosis isolates. Till date there are no studies that have examined the genomic composition of M. tuberculosis isolates from the high TB-burden country, Myanmar. Methodology/Principle Findings: Twenty-two M. tuberculosis isolates from Myanmar were screened on whole-genome arrays containing genes from M. tuberculosis H37Rv, M. tuberculosis CDC1551 and M. bovis AF22197. Screening identified 198 deletions or extra regions in the clinical isolates compared to H37Rv. Twenty-two regions differentiated between Beijing and non-Beijing isolates and were verified by PCR on an additional 40 isolates. Six regions (Rv0071-0074 [RD105], Rv1572-1576c [RD149], Rv1585c-1587c [RD149], MT1798-Rv1755c [RD152], Rv1761c [RD152] and Rv0279c) were deleted in Beijing isolates, of which 4 (Rv1572-1576c, Rv1585c-1587c, MT1798-Rv1755c and Rv1761c) were variably deleted among ST42 isolates, indicating a closer relationship between the Beijing and ST42 lineages. The TbD1 region, Mb1582-Mb1583 was deleted in Beijing and ST42 isolates. One M. bovis gene of unknown function, Mb3184c was present in all isolates, except 11 of 13 ST42 isolates. The CDC1551 gene, MT1360 coding for a putative adenylate cyclase, was present in all Beijing and ST42 isolates (except 1). The pks15/1 gene, coding for a putative virulence factor, was intact in all Beijing and non-Beijing isolates, except in ST42 and ST53 isolates. Conclusion: This study describes previously unreported deletions/extra regions in Beijing and non-Beijing M. tuberculosis isolates. The modern and highly frequent ST42 lineage showed a closer relationship to the hypervirulent Beijing lineage than to the ancient non-Beijing lineages. The pks15/1 gene was disrupted only in modern non-Beijing isolates. This is the first report of an in-depth analysis on the genomic diversity of M. tuberculosis isolates from Myanmar

    Rasch analysis of the Patient Rated Elbow Evaluation questionnaire

    Get PDF
    © 2015 Vincent et al. Background: The Patient Rated Elbow Evaluation (PREE) was developed as an elbow joint specific measure of pain and disability and validated with classical psychometric methods. More recently, Rasch analysis has contributed new methods for analyzing the clinical measurement properties of self-report outcome measures. The objective of the study was to determine aspects of validity of the PREE using the Rasch model to assess the overall fit of the PREE data, the response scaling, individual item fit, differential item functioning (DIF), local dependency, unidimensionality and person separation index (PSI). Methods: A convenience sample of 236 patients (Age range 21-79 years; M: F- 97:139) with elbow disorders were recruited from the Roth|McFarlane Hand and Upper Limb Centre, London, Ontario, Canada. The baseline scores of the PREE were used. Rasch analysis was conducted using RUMM 2030 software on the 3 sub scales of the PREE separately. Results: The 3 sub scales showed misfit initially with disordered thresholds on17 out of 20 items), uniform DIF was observed for two items ( Carrying a 10lbs object from specific activities subscale for age group; and household work from the usual activities subscale for gender); multidimensionality and local dependency. The Pain subscale satisfied Rasch expectations when item 2 Pain - At rest was split for age group, while the usual activities subscale readily stood up to Rasch requirements when the item 2 household work was split for gender. The specific activities subscale demonstrated fit to the Rasch model when sub test analysis accounted for local dependency. All three subscales of the PREE were well targeted and had high reliability (PSI \u3e0.80). Conclusion: The three subscales of the PREE appear to be robust when tested against the Rasch model when subject to a few alterations. The value of changing the 0-10 format is questionable given its widespread use; further Rasch-based analysis of whether these findings are stable in other samples is warranted

    RNA interference machinery regulates chromosome dynamics during mitosis and meiosis in fission yeast

    Get PDF
    The regulation of higher-order chromosome structure is central to cell division and sexual reproduction. Heterochromatin assembly at the centromeres facilitates both kinetochore formation and sister chromatid cohesion, and the formation of specialized chromatin structures at telomeres serves to maintain the length of telomeric repeats, to suppress recombination, and to aid in formation of a bouquet-like structure that facilitates homologous chromosome pairing during meiosis. In fission yeast, genes encoding the Argonaute, Dicer, and RNA-dependent RNA polymerase factors involved in RNA interference (RNAi) are required for heterochromatin formation at the centromeres and mating type region. In this study, we examine the effects of deletions of the fission yeast RNAi machinery on chromosome dynamics during mitosis and meiosis. We find that the RNAi machinery is required for the accurate segregation of chromosomes. Defects in mitotic chromosome segregation are correlated with loss of cohesin at centromeres. Although the telomeres of RNAi mutants maintain silencing, length, and localization of the heterochromatin protein Swi6, we discovered defects in the proper clustering of telomeres in interphase mitotic cells. Furthermore, a small proportion of RNAi mutant cells display aberrant telomere clustering during meiotic prophase. This study demonstrates that the fission yeast RNAi machinery is required for the proper regulation of chromosome architecture during mitosis and meiosis

    Shelterin components mediate genome reorganization in response to replication stress

    Get PDF
    The dynamic nature of genome organization impacts critical nuclear functions including the regulation of gene expression, replication, and DNA damage repair. Despite significant progress, the mechanisms responsible for reorganization of the genome in response to cellular stress, such as aberrant DNA replication, are poorly understood. Here, we show that fission yeast cells carrying a mutation in the DNA-binding protein Sap1 show defects in DNA replication progression and genome stability and display extensive changes in genome organization. Chromosomal regions such as subtelomeres that show defects in replication progression associate with the nuclear envelope in sap1 mutant cells. Moreover, high-resolution, genome-wide chromosome conformation capture (Hi-C) analysis revealed prominent contacts between telomeres and chromosomal arm regions containing replication origins proximal to binding sites for Taz1, a component of the Shelterin telomere protection complex. Strikingly, we find that Shelterin components are required for interactions between Taz1-associated chromosomal arm regions and telomeres. These analyses reveal an unexpected role for Shelterin components in genome reorganization in cells experiencing replication stress, with important implications for understanding the mechanisms governing replication and genome stability

    Pleiotropic Roles of Calmodulin in the Regulation of KRas and Rac1 GTPases: Functional Diversity in Health and Disease

    Get PDF
    Calmodulin is a ubiquitous signalling protein that controls many biological processes due to its capacity to interact and/or regulate a large number of cellular proteins and pathways, mostly in a Ca2+-dependent manner. This complex interactome of calmodulin can have pleiotropic molecular consequences, which over the years has made it often di cult to clearly define the contribution of calmodulin in the signal output of specific pathways and overall biological response. Most relevant for this review, the ability of calmodulin to influence the spatiotemporal signalling of several small GTPases, in particular KRas and Rac1, can modulate fundamental biological outcomes such as proliferation and migration. First, direct interaction of calmodulin with these GTPases can alter their subcellular localization and activation state, induce post-translational modifications as well as their ability to interact with e ectors. Second, through interaction with a set of calmodulin binding proteins (CaMBPs), calmodulin can control the capacity of several guanine nucleotide exchange factors (GEFs) to promote the switch of inactive KRas and Rac1 to an active conformation. Moreover, Rac1 is also an effector of KRas and both proteins are interconnected as highlighted by the requirement for Rac1 activation in KRas-driven tumourigenesis. In this review, we attempt to summarize the multiple layers how calmodulin can regulate KRas and Rac1 GTPases in a variety of cellular events, with biological consequences and potential for therapeutic opportunities in disease settings, such as cancer

    A Discrete Class of Intergenic DNA Dictates Meiotic DNA Break Hotspots in Fission Yeast

    Get PDF
    Meiotic recombination is initiated by DNA double-strand breaks (DSBs) made by Spo11 (Rec12 in fission yeast), which becomes covalently linked to the DSB ends. Like recombination events, DSBs occur at hotspots in the genome, but the genetic factors responsible for most hotspots have remained elusive. Here we describe in fission yeast the genome-wide distribution of meiosis-specific Rec12-DNA linkages, which closely parallel DSBs measured by conventional Southern blot hybridization. Prominent DSB hotspots are located ∼65 kb apart, separated by intervals with little or no detectable breakage. Most hotspots lie within exceptionally large intergenic regions. Thus, the chromosomal architecture responsible for hotspots in fission yeast is markedly different from that of budding yeast, in which DSB hotspots are much more closely spaced and, in many regions of the genome, occur at each promoter. Our analysis in fission yeast reveals a clearly identifiable chromosomal feature that can predict the majority of recombination hotspots across a whole genome and provides a basis for searching for the chromosomal features that dictate hotspots of meiotic recombination in other organisms, including humans
    corecore